太阳集团所有网址16877MaxCompute MapReduce

原标题:通过简单瘦身,解决Dataworks 10M文件限制问题

摘要:大数据计算服务(MaxCompute)的功能详解和使用心得

摘要: 用户在DataWorks上执行MapReduce作业的时候,文件大于10M的JAR和资源文件不能上传到Dataworks,导致无法使用调度去定期执行MapReduce作业。 解决方案: jar -resources test_mr.

点此查看原文:http://click.aliyun.com/m/41384/

用户在DataWorks上执行MapReduce作业的时候,文件大于10M的JAR和资源文件不能上传到Dataworks,导致无法使用调度去定期执行MapReduce作业。

前言

解决方案:

MapReduce已经有文档,用户可以参考文档使用。本文是在文档的基础上做一些类似注解及细节解释上的工作。

第一步:大于10M的resources通过MaxCompute CLI客户端上传,

功能介绍

客户端下载地址:

MapReduce

客户端配置AK、EndPoint:

太阳集团所有网址16877 1

add jar C:test_mrtest_mr.jar -f;//添加资源

说起MapReduce就少不了WordCount,我特别喜欢文档里的这个图片。

第二步:目前通过MaxCompute CLI上传的资源,在Dataworks左侧资源列表是找不到的,只能通过list resources查看确认资源;

比如有一张很大的表。表里有个String字段记录的是用空格分割开单词。最后需要统计所有记录中,每个单词出现的次数是多少。那整体的计算流程是

list resources;//查看资源

输入阶段:根据工作量,生成几个Mapper,把这些表的数据分配给这些Mapper。每个Mapper分配到表里的一部分记录。

第三步:瘦身Jar,因为Dataworks执行MR作业的时候,一定要本地执行,所以保留个main就可以;

Map阶段:每个Mapper针对每条数据,解析里面的字符串,用空格切开字符串,得到一组单词。针对其中每个单词,写一条记录

太阳集团所有网址16877 2

Shuffle阶段-合并排序:也是发生在Mapper上。会先对数据进行排序。比如WordCount的例子,会根据单词进行排序。排序后的合并,又称Combiner阶段,因为前面已经根据单词排序过了,相同的单词都是连在一起的。那可以把2个相邻的合并成1个。Combiner可以减少在后续Reduce端的计算量,也可以减少Mapper往Reducer的数据传输的工作量。

通过上述方法,我们可以在Dataworks上跑大于10M的MR作业。

Shuffle阶段-分配Reducer:把Mapper输出的单词分发给Reducer。Reducer拿到数据后,再做一次排序。因为Reducer拿到的数据已经在Mapper里已经是排序过的了,所以这里的排序只是针对排序过的数据做合并排序。

作者:隐林

Reduce阶段:Reducer拿前面已经排序好的输入,相同的单词的所有输入进入同一个Redue循环,在循环里,做个数的累加。

​本文为云栖社区原创内容,未经允许不得转载。返回搜狐,查看更多

输出阶段:输出Reduce的计算结果,写入到表里或者返回给客户端。

责任编辑:

拓展MapReduce

如果Reduce后面还需要做进一步的Reduce计算,可以用拓展MapReduce模型(简称MRR)。MRR其实就是Reduce阶段结束后,不直接输出结果,而是再次经过Shuffle后接另外一个Reduce。

Q:如何实现M->R->M->R这种逻辑呢

A:在Reduce代码里直接嵌套上Map的逻辑就可以了,把第二个M的工作在前一个R里完成,而不是作为计算引擎调度层面上的一个单独步骤,比如

reduce(){

    ...

    map();

}

快速开始

运行环境

工欲善其事,必先利其器。MR的开发提供了基于IDEA和Eclipse的插件。其中比较推荐用IDEA的插件,因为IDEA我们还在持续做迭代,而Eclipse已经停止做更新了。而且IDEA的功能也比较丰富。

具体的插件的安装方法步骤可以参考文档,本文不在赘言。

另外后续还需要用到客户端,可以参考文档安装。

后续为了更加清楚地说明问题,我会尽可能地在客户端上操作,而不用IDEA里已经集成的方法。

线上运行

以WordCount为例,文档可以参考这里

步骤为

做数据准备,包括创建表和使用Tunnel命令行工具导入数据

将代码拷贝到IDE里,编译打包成mapreduce-examples.jar

在odpscmd里执行add jar命令:

add jar /JarPath/mapreduce-examples.jar -f;

这里的/JarPath/mapreduce-examples.jar的路径要替换成本地实际的文件路径。这个命令能把本地的jar包传到服务器上,-f是如果已经有同名的jar包就覆盖,实际使用中对于是报错还是覆盖需要谨慎考虑。

在odpscmd里执行

`jar -resources mapreduce-examples.jar -classpath mapreduce-examples.jar

com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out`

等待作业执行成功后,可以在SQL通过查询wc_out表的数据,看到执行的结果

功能解读

任务提交

任务的是在MaxComput(ODPS)上运行的,客户端通过jar命令发起请求。

对比前面的快速开始,可以看到除去数据准备阶段,和MR相关的,有资源的上传(add jar步骤)和jar命令启动MR作业两步。

客户端发起add jar/add file等资源操作,把在客户端的机器(比如我测试的时候是从我的笔记本)上,运行任务涉及的资源文件传到服务器上。这样后面运行任务的时候,服务器上才能有对应的代码和文件可以用。如果以前已经传过了,这一步可以省略。

jar -resources mapreduce-examples.jar -classpath mapreduce-examples.jar com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out

这个命令发起作业。MapReduce的任务是运行在MaxCompute集群上的,客户端需要通过这个命令把任务运行相关的信息告诉集群。

客户端先解析-classpath参数,找到main方法相关的jar包的位置

根据com.aliyun.odps.mapred.open.example.WordCount,找到main方法所在类的路径和名字

wc_in wc_out是传给main方法的参数,通过解析main方法传入参数String[] args获得这个参数

太阳集团所有网址16877,-resources告诉服务器,在运行任务的时候,需要用到的资源有哪些。

JobConfig

JobConf定义了这个任务的细节,还是这个图,解释一下JobConf的其他设置项的用法。

本文由太阳集团所有网址16877发布于太阳集团所有网址16877,转载请注明出处:太阳集团所有网址16877MaxCompute MapReduce

您可能还会对下面的文章感兴趣: